
 
 

DENIS BUENO
DISSERTATION DEFENSE

Wednesday, December 9, 2020
1:00 PM
Virtual (Register in advance)

ABSTRACT: Software model checkers attempt to algorithmically synthesize an inductive proof 
that a piece of software is safe. Such proofs are composed of complex logical assertions about 
program variables and control structures, and are computationally expensive to produce.

Our unifying motivation is to increase the efficiency of verifying software control behavior 
despite its dependency on data. Control properties include important topics such as mutual 
exclusion, safe privilege elevation, and proper usage of networking and other APIs. These 
concerns motivate our techniques and evaluations.

We reduce this cost by integrating an efficient abstraction procedure based on the logic of 
equality with uninterpreted functions (EUF) into the core of a modern model checker. Our 
checker, called euforia, targets control properties by treating a program’s data operations 
and relations as uninterpreted functions and predicates, respectively. This reduces the cost 
of building inductive proofs, especially for verifying control relationships in the presence of 
complex but irrelevant data processing. We show that our method is sound and terminates. 
We provide a ground-up implementation and evaluate the abstraction on a variety of software 
verification benchmarks.

We show how to extend this abstraction to memory-manipulating programs. By judicious 
abstraction of array operations to EUF, we show that we can directly reason about array reads 
and adaptively learn lemmas about array writes leading to significant performance improvements 
over existing approaches. We show that our abstraction of array operations completely eliminates 
much of the array theory reasoning otherwise required. We report on experiments with and 
without abstraction and compare our checker to the state of the art.

Programs with procedures pose unique difficulties and opportunities. We show how to retrofit 
a model checker not supporting procedures so that it supports modular analysis of programs 
with non-recursive procedures. This technique applies to euforia as well as other logic-based 
algorithms. We show that this technique enables logical assertions about procedure bodies to be 
reused at different call sites. We report on experiments on software benchmarks compared to the 
alternative of inlining all procedures.
CHAIR: Prof. Karem Sakallah

Software Model Checking 
with Uninterpreted 
Functions

https://umich.zoom.us/meeting/register/tJUvce-vrT0rE9JlqEdXw5gu1ykoRga_VwWH

